Example 1:design of rectangular beam
Design a rectangular beam for a 22-ft simple span if a dead load of 1 k/ft (not including the beam weight) and a live load of 2 k/ft are to be supported. Use f'c = 4000psi and fy = 60,000 psi.(assume h=0.1*L)
h=0.1*L=0.1*22=2.2ft say 27 in and d=24.5in
assuming b=0.5*h=0.5*2.2=1.1ft say 14in
Beam weight=27*14*150/144=393lb/ft3=0.393k/ft3
Wu=1.2*DL+1.6L.L
Wu=1.2*(1+.393)+1.6*2
Wu=4.87k/ft2
Mu for simply supported beam=(Wu*(L^2))/8=(4.87*(22^2))/8=292.215k/ft2
assuming b=0.5*h=0.5*2.2=1.1ft say 14in
Beam weight=27*14*150/144=393lb/ft3=0.393k/ft3
Wu=1.2*DL+1.6L.L
Wu=1.2*(1+.393)+1.6*2
Wu=4.87k/ft2
Mu for simply supported beam=(Wu*(L^2))/8=(4.87*(22^2))/8=292.215k/ft2
ρ=(0.85*fc'/fy)*(1-√(1-(2*Rn/0.85*fc'))
Rn=ɸ*Mu/(b*d)
assuming ɸ=0.90
Rn=Mu/(ɸ*b*d^2)
Rn=292.21/(0.90*1.1*2.2^2)
Rn=60.98 k/ft2=423.47psi
ρ=(0.85*4000/60000)*(1-√(1-(2*423.47/0.85*4000))
ρ=0.00756
ρ=0.00756
selecting reinforcement
As=ρ*b*d
As=0.00756*2.2*1.1*12*12=2.63in2
use 3#9 bars (As=3in2)
ρ=As/b*d=3/(14*24.5)=0.00875
ρmin=(3√fc'/fy) and not less than 200/fy
ρmin=((3√4000)/60000) and not less than 200/60000
ρmin=0.0033
so ρ>ρmin then ok
now we will calculate εt
0.003/C=(εt+.003)/d
C=a/β1
a=As*fy/0.85*fc'*b
a=3*60000/0.85*4000*14
a=3.78
β1=0.85 for fc'=4000psi
C=3.78/.85=4.44in
ρmin=(3√fc'/fy) and not less than 200/fy
ρmin=((3√4000)/60000) and not less than 200/60000
ρmin=0.0033
so ρ>ρmin then ok
now we will calculate εt
0.003/C=(εt+.003)/d
C=a/β1
a=As*fy/0.85*fc'*b
a=3*60000/0.85*4000*14
a=3.78
β1=0.85 for fc'=4000psi
C=3.78/.85=4.44in
0.003/4.44=(εt+.003)/24.5
εt=0.01>0.005, therefore, the section is tension control and our assumption is ok
Figure 1
checking if ɸ*Mn>Mu


Comments
Post a Comment